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Abstract

The effective boundary condition method is extended to nano-scale mesoscopic systems.
The EBCs appear as a result of the 2D-homogenezation procedure and have the form of
two-side anisotropic impedance boundary conditions stated on the structure's surface. The
surface impedance tensor has been evaluated for a set of typical nanostructures. It has been
shown that, unlike to macroscopic electrodynamics, the surface impedance tensor exhibits
sharp oscillations at frequencies of optical transitions. The EBC method supplemented with
well-developed mathematical techniques of classical electrodynamics creates unified basis for
solution of boundary-value problems in electrodynamics of nanostructures. A generalization
of the EBC method to the quantum electrodynamics is also presented,

1. Introduction

Rapid progress in the synthesis of a variety of different kinds of spatially confined nanostruc-
tures with fascinating electronic and optical properties irreducible to properties of bulk media
symbolizes a fundamental breakthrough in solid state physics. The key peculiarities of such
structures are related to spatial confinement of the charge carrier motion and their nanoscale
spatial inhomogeneity. Since the inhomogeneity scale is much less than the optical wavelength,
in many cases it turns out to be possible under analysis to reduce the dimensionality of struc-
ture (low-dimensional structure). In this contribution we present a method of evaluation of the
electromagnetic response of low-dimensional nanostructures formed by thin layers with intrinsic
2D periodicity with characteristic period much less than the optical wavelength, e.g., carbon
nanotubes (CNs) [1], planar arrays of quantum dot (QDs) [2].

This method, conventionally referred to as the effective boundary condition (EBC) method,
has been originally developed for microwaves and antenna theory [3]-[5], and has found a wide
application in these fields, e. g., for the design of semi-transparent grid screens and helical
sheaths in traveling wave tubes'. In essence, the EBC method is modification of the effective
medium theory as applied to 2D-confined structures. The basic idea of the EBC method is that
a smooth homogeneous surface is considered instead a periodic structure, and appropriate EBCs
for the electromagnetic field are stated for this surface. These conditions are chosen in such a
way that the spatial structures of the electromagnetic field due to an effective current induced
on the homogeneous surface, and the electromagnetic field of the real current in the lattice turn
out to be identical some distance away from the surface. The lattice parameters are included
in coefficients of the EBCs. The applicability of the EBCs is restricted by the requirement that
the lattice period be small compared with the free-space wavelength. The effectiveness of the

1Similar approaches have been developed in acoustics, hydrodynamics, elasticity theory.
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EBC method is determined by a possibility its extension to more complicated situations. Such

an extension is only possible when the parameters involved in the EBCs do not depend on the
spatial structure of the irradiating field, or, in another words, the EBCs must be local, i.e.,
they must couple field components and their spatial derivatives at a given point of space. In
the simplest case, the EBCs have the form of two-side impedance boundary conditions on the
surface S:

[n[n,H' - Hn]] - 47r&n,E]
C

In, E' - E"] = 0 (2)

where c is the speed of light. The unit vector n is normal to the surface S and is directed from
region I to region IL. The effective conductivity tensor & contains information about geometrical
configuration and constitutive parameters of the lattice. EBCs in the form given by Eqs. (1)-(2)
are obtained neglecting (i) polarization of the structure in the n direction, and (ii) contribution
of spatial dispersion into conductivity.

2. Formulation of the EBCs for Planar Nanostructures

In order to derive the EBCs, a kernel problem must be solved in each particular case. For
example, this problem is formulated for grid screens as the problem of plane wave scattering by
the infinite plane screen [4]. Below we consider the kernel problems for two particular cases of
low-dimensional nanostructures.

A) Carbon nanotubes.
As applied to CNs, the kernel problem is to derive the EBCs for an isolated infinitely long regular
CN with an arbitrary index (m, n), i. e., to derive the EBCs for a cylindrical surface of the radius
R with R as the CN radius. Neglecting indirect interband transitions in the 7r-electrons' motion,
the conductivity tensor of the CN is given by [6]

& 0 0z (3)

where o-, is the axial conductivity of CN; this quantity appears in coupling of the microscopic
properties of the CN and its macroscopic electromagnetic response. The treatment of the axial

dynamical conductivity of an isolated CN has been given in Refs. [7], [8]. Both semi-classical and
quantum-mechanical analyses of the conductivity have been presented in the above references.
In some cases, the role of spatial dispersion for CNs turns out to be essential. In that cases, Eq.
(2) keeps validity while Eq. (1) is transformed to

A[n [n, H' - HIll] - 47& In, E] (4)
c

where S~o)

0 o+10 0 (5)
+k(1 +Yi/w)

lo is the spatial dispersion parameter and v is the relaxation frequency. In a general case, the
quantities o-, and lo are evaluated using the quantum-mechanical transport theory. Though

the CN surface possesses a periodic crystalline structure, Eqs. (4)-(5) incorporate only constant
coefficients (i.e., o-, and lo), and are devoid of any periodic functions. This is because the
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technique of deriving the EBCs is equivalent to the averaging of microscopic fields over an
infinitesimally small volume.

The conductivity was assumed to be quasi-one-dimensional while ao, 0c0 and 0€€ were
ignored in the derivation of the EBCs. As a consequence, we obtained conditions (2), (4) and
(5) for the electromagnetic field across the CN surface. The polar conductivity aoo is due to
indirect interband transitions neglected in our model and will surely modify the stated EBCs.
The role of aO- and uOz is expected to be important, for example, in chiral CNs in relation to
the effect of natural optical activity exhibited by such CNs.

B) 2D-lattice of QDs.
In QDs, apart from the charge carrier confinement [2], there exist a class of electrodynamic
effects related to light diffraction by QDs and QD ensembles, which strongly influence the
electromagnetic response properties of such systems [9] -[11]. Here we consider 2D arrays of
QDs to establish correlation between properties of such systems and homogeneous 2D structures
like quantum wells. The key problem here is the diffraction by infinite planar quadratic lattice
constituted by identical QDs imbedded in a host medium. The host medium is assumed to
be dispersionless and transparent. Conventional phenomenological model of the dispersion and
the gain of a single QD is as follows: e(w) = Ch + go/(w - wo + i/r). Here Ch is the host
medium permittivity while the quantity go is the phenomenological parameter proportional to
the oscillator strength of the transition; go > 0 in an inverted medium.

Let the normal n be directed along the z-axis and let the incident planewave be polarized
along the x-axis. Further we restrict ourselves to the dipole approximation of the diffraction
theory. In that case, the scattering field from an isolated QD can be expressed in terms of Hertz
potentials by

00

E= (VV +k) Im, (6)
l'm=-00

-ikEh E V x fl, (7)
lm=-oo

where

Im= ezaxz(0) exp{ikiPim}/Pim, (8)

ki = kvtg'j, Pl.r [(ld-x) 2 + (md-y)2 + z 2]1/ 2 , ax. is the QD polarizability tensor component,
d is the lattice period, and Ex (0) is the electric field inside QD. This field is related to the mean
field in the layer, Ex(O), by Ex(O) = (1 + jaxx~/d2 )Ex(0), where 61 is the lattice parameter:

d/2 d/2
f f 2x 2 -y 2  8

f (X 2 + -. y 2 ) 5 /2  -%,52-d (9)
-d/2 -d/2

After some manipulations with Eqs. (6), (7) (see, e.g., [12]), in the limit z -+ ±0 we come to
Eqs. (1), (2) with the x0y plane as the S surface and

"& 4=rWeh 3I -1 (10)

Here i is the unit tensor. Second term in the brackets is due to the depolarization related to
the difference between mean and acting fields.

It should be noted that the assumption (i) which neglect polarization of the structure in the
n direction, holds true only for QDs with planar configuration in x0y plane, e. g., discs, islands,
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flattened pyramids, etc. For QDs with comparable extensions in all directions, the derivation of
EBCs presented above should be generalized. Derivation method remains the same: scattered
fields are described by Eqs. (6), (7), but Hertz potentials are given by

[e.ax•8x(0) + eza,,98(O)] exp{iklpim}/pim, (11)

where a,_ stands for the QD polarizability in the z direction. Contribution of the transverse
polarizability qualitatively modifies the EBCs: tangential components of the electric field exhibit
discontinuity at the S surface.

In that case, relation between z-components of internal field of QD and mean field is given
by E~z (0) + E.1I(0) = 2(1 + azz62 /d 2)f(0), where

J1----lim d/2 d/2 2z 2-_x2-- Y2 d y-2 7r V/7 (12)
Z-+O_ f _ (X2-+y2-+ Z2)5/2dxy d

d/2 d/2

Then, carrying out with Eqs. (6), (7) the manipulations analogous to the described above, we
come to the generalized EBCs as follows:

In [n, H' - HII]] - &n, El + E"], (13)

[n, E' - E"] = -6[n, V(n, E' + E"I)] (14)

with the conductivity tensor & defined by Eq. (10) and ý = 21ra,!,/(d 2 + e2aZZ).

The above equations constitute the complete system of EBCs for electromagnetic field in low-
dimensional nanostructures. They have been obtained in the ordinary way, by the averaging of a
microscopic field over a physically infinitesimal volume. The technique of macroscopic averaging
is similar to one of introducing constitutive parameters for bulk media, but differing in that
the averaging occurs in boundary conditions, but not in field equations. Correspondingly, the
averaging was carried out over the 2-D surface (cylindrical for CNs or plane for QD sheets) but
not over the 3-D spatial element. Thus, in electrodynamics of low-dimensional structures the
EBCs play the same role as constitutive relations in electrodynamics of balk media.

3. EBCs in Quantum Electrodynamics of Nanostructures

As different from macroscopic microwave lattices, in nanostructures effects become valid related
to quantum nature of the electromagnetic radiation (spontaneous irradiation, Kazimir forces,
electromagnetic fluctuations, etc.). Obviously, quantum electrodynamics (QED) should be ap-
plied for description of such effects. In Ref. [13] a procedure of the electromagnetic field quan-
tization in inhomogeneous Kramers-Kronig bulk dielectrics. In the framework of this approach,
the electric field operator is introduced by

00

f(r) - Jdw I(r, w) + H.c. (15)
0

Analogous expression can be written for the magnetic field. The Maxwell equations with a source
term corresponding to the dissipation-assisted quantum noise have been formulated in Ref. [13]
for the operators l_(r, w), II(r, w). Physically observable quantities are found by averaging of
corresponding field operators. The above mentioned source term provides necessary commuta-
tive relations for these operators. Our analysis has shown that the basic ideas presented in Ref.
[13] in combination with the EBC method can be extended to the case of spatially inhomoge-
neous low-dimensional structures. For simplicity we neglect both the medium polarization in
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the z-direction and the spatial dispersion. The conductivity tensor is assumed to be given in its
eigenbasis. In such a case, the field operators t(r, w), fI(r, w) satisfy to the vacuum Maxwell
equations and the EBCs as follows

ft.r 11 41r& - 47tn in,- -IRI ] = 4-[n,,E] -- IN, (16)

C C-.1 -- :II]]"c

[n,E - I = 0 (17)

where !JN is the operator of the surface noise current density which can be presented by

•hw ^

JN (R, W) = -[ }+ E(-3{&ii})fi (R,w)] I i = 1,2. (18)

Here R E S and e(.) stands for the unit step function; fi(R, w) and f+ (R, w) are the annihilation
and creation operators, respectively, of the 2D bosonic field. This field satisfies to the Heisenberg
equations of motions and is analogous to the 3D bosonic field described in Ref. [13]. It can
easily be found that the second term in brackets in right-hand part of Eq. (18) disappears for
thermodynamically equilibrium systems.

The key feature of QED EBCs (16)-(17) which distinguishes them from the classical EBCs
(1)-(2) is the presence of the surface noise current JN. This current makes it possible to satisfy
the commutation relations for the field operators. Corresponding proofs will be given separately
elsewhere. The fundamental difference between quantum electromagnetic field and the classical
one is the presence in the quantum field of zero-point vacuum oscillations. Similar to classi-
cal electromagnetic field, zero-point vacuum oscillations will diffract by spatial inhomogeneities
(nanostructure). The diffraction distorts the spatial structure of zero-point oscillations as com-
pared with the virtual photons in vacuum. This diffraction process is described by the EBC
operators (16)-(17).

4. Utilization of EBCs

Potentiality of utilization of the EBCs method under consideration of particular electrodynam-
ical problems is provided by applying the solution of the kernel problem to a variety of much
more complicated situations: curved and/or bounded screens, screens placed in the vicinity of
dielectric or metallic surfaces, etc. For example, EBCs (4)-(5) has been derived for an isolated
infinitely long CN. Nevertheless, our formalism can be utilized for consideration of diffraction
problems in different types of nanotubes, viz., CNs of finite length (first results in this field have
been presented in Ref. [14]), bent and corrugated CNs, CNs with junctions, multi-shell CNs with
hexagonal cross-section, CN-based composites, etc. The derived effective boundary conditions
can also serve as the basis for description of interaction of CNs with beams of electrons and
other charged particles. The investigation of guided surface wave propagation in single- and
multi-shell CNs carried out in [7], [8] exemplifies the application of the formalism developed,
and it is of significance in its own right too. Such waves can be excited by directing laser or
electron beams along a CN axis. These surface waves are characterized by strong retardation
and, consequently, have large field gradients in the transverse plane. As the result, such surface
waves must manifest a strong pondermotive effect.

As applied to 2D lattices of QDs, the EBC method allows us to analyze electromagnetic
response of such layers (or multilayer structures) placed in microcavity: this is of importance
for the design of QD-based semiconductor lasers [2]. EBCs given by Eqs. (13), (14) state
mathematical equivalence of 2D periodical layer of QDs and an isolated quantum well. It should
be stressed that the mechanisms of transport processes and oscillator strengths in each case
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are essentially different. Nevertheless, the equivalence makes it possible to extend to QD-based
planar structures the well-developed mathematical formalism of investigation of quantum wells.

In particular, starting conditions for QD-based lasers can be evaluated by analogy with solution
of the corresponding problem for the quantum well [15].

It should be emphasized that the extension of the EBC method to deformed or complicated
structures is only possible when the modification of geometrical parameters of the structure does
not change the electron transport properties in it; otherwise, modification of EBC is required.
For example, too close location of two planar layers with QDs will change the energy spectrum
because of overlapping of exciton wave functions, tunneling, etc. Analogously, too strong bend
of CN will distort quasi-free motion of 7r-electrons in it and, consequently, may change the con-
ductivity character. Thus, justification of applicability of EBCs must be given in each particular
case.
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